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1. Introduction

Cryptocurrencies have seen a striking increase in popularity since their inception only a

few years ago. The most prominent one, Bitcoin, was the first to operate without any central

authority by relying on a distributed ledger, the blockchain. On it, transactions are recorded

and verified by miners through a consensus mechanism called proof-of-work (PoW), which

addresses one of the fundamental problems of virtual currencies without trusted authorities,

the double-spending problem. To verify the integrity of transactions, miners compete by

solving computationally intensive mathematical puzzles. The first to find a solution appends

the next block of transactions to the chain and receives newly-issued coins and any fees paid

by users. However, the processes is very energy-intensive, so miners tend to gravitate towards

regions with cheap electricity. As the cryptocurrency market continues to grow, concerns

regarding the resulting limits to decentralization and the ecological impact of mining increase.

We analyze risks associated with this geographical centralization of mining by exploiting

an exogenous shock to electricity supply in a relatively small region with heavy Bitcoin

mining activity as a quasi-natural experiment. During a blackout lasting several days, we

document a drop of about 25% in the computing power of the Bitcoin network. Compared

to a control group consisting of a cryptocurrency using a more energy-efficient consensus

mechanism, we find that fees paid to miners increase substantially while the number and value

of transactions decrease. Exchange trading volume and especially exchange rate volatility

increase substantially, while liquidity deteriorates during the blackout. However, returns

appear to be mostly unaffected.

The results have important implications regarding the centralization within the Bitcoin

network due to its consensus mechanism. While many cryptocurrencies are designed to be de-

centralized, in practice economic forces might lead to centralization along several dimensions.

For example, Böhme et al. (2015) identify cryptocurrency exchanges and wallet services as

potential sources of centralization. Mining pools where users combine their resources to ob-

tain a more stable stream of mining rewards are also considered a threat to decentralization,
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though the model of Cong et al. (2021) expects a decentralized market structure for Bitcoin

in the long run even in the presence of centralized mining pools. Focusing on another source

of centralization, Arnosti and Weinberg (2021) find that production and ownership of mining

hardware leads to a costly arms race and centralization within Bitcoin mining. Similarly,

Ferreira et al. (2021) model blockchain governance and show that in a PoW system, so called

blockchain conglomerates – large firms that operate in multiple blockchain related business

like mining equipment and mining pools – may control blockchain votes and thus governance.

Capponi et al. (2021) argue that because miners are capacity constrained, centralization does

not necessarily result from increases in hardware efficiency. On the contrary, investments

leading to more efficient mining hardware allow new and small miners to enter or expand

their operations. Lehar and Parlour (2020) investigate the effect of strategic capacity man-

agement by miners and show that mining concentration is related to higher levels of fees

for users. In this paper, we add to the literature on the centralization within the Bitcoin

network by empirically showing system-wide risks arising from geographically concentrated

mining.

By comparing two currencies with different consensus mechanisms, our study also re-

lates to the literature on the relative advantages of PoW and alternative mechanisms. In

particular, Arnosti and Weinberg (2021) conjecture that under certain conditions, the proof-

of-stake (PoS) consensus mechanism might contribute to cryptocurrency decentralization.1

This mechanism does not rely on miners to verify transactions, but instead randomly chooses

validators where the probability of being drawn increases in the amount of coins deposited

as stake. Chosen validators update the blockchain and get rewarded by newly-issued coins.

Their stake in the currency incentivizes validators not to compromise the blockchain, which

would render the currency worthless. Within the PoS literature, Saleh (2021) provides a

first economic analysis of the mechanism and gives equilibrium conditions for consensus.

Still, a common criticism of the PoS mechanism is that it could lead to wealth accumulation

1The second largest cryptocurrency, Ethereum, is anticipated to transition from PoW to PoS.
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and thus centralization because validators with larger stakes have a higher probability of

being chosen and thus obtaining the reward, increasing their stake further. Roşu and Saleh

(2021) address this concern by showing that without trading, any investor’s share in the

network follows a martingale and is not expected to change in the long run. Under certain

assumptions, this conclusion also holds when investors are allowed to trade.

While according to Irresberger et al. (2020), PoW and PoS are the most common con-

sensus algorithms for cryptocurrencies, we note that other algorithms are sometimes used.

Related to PoS is designated proof-of-stake (DPoS), where stakeholders vote from a fixed

and limited number of delegates. The voting power is proportional to the stake in the

network and the voted delegate then is responsible for producing blocks. This mechanism

is e.g. used by the cryptocurrencies Polkadot, Tronix (of the TRON network), and EOS.

Leased proof-of-stake (LPoS) is similar to DPoS, but instead of voting, users lease out their

tokens and thus the right to produce blocks to generating nodes in exchange for some award.

LPoS does not rely on a limited number of nodes and thus tends to be less centralized than

DPoS. Waves is the most prominent example of an LPoS cryptocurrency. Some alternative

consensus mechanisms rely on storage space. For example, in Burstcoin’s proof-of-capacity

(PoC), miners compete by providing disk space that is not otherwise used and in Filecoin’s

proof-of-spacetime consensus mechanism, miners effectively rent out disk space. Other mech-

anisms include proof-of-importance, proof-of-burn, proof-of-elapsed-time, proof-of-authority,

and the more general proof-of-weight. Some cryptocurrencies even use combinations of dif-

ferent consensus algorithms.

An argument favoring non-PoW currencies is that they are generally more energy effi-

cient. This not only contributes to geographical decentralization, but is also particularly

important as several studies have voiced concerns that Bitcoin mining could be a substantial

factor for climate change, though there is no consensus on the magnitude. (Dittmar and

Praktiknjo, 2019; de Vries, 2020). In a related issue, regulators and market participants

worry about spillovers from mining activity to the electricity market. For the United States,
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Benetton et al. (2021) document higher electricity costs for households and small businesses

due to regional cryptocurrency mining activity. For China, the authors find a crowding-out

effect on the local economy due to mining-induced regional electricity rationing. Karmakar

et al. (2021) observe that Bitcoin mining activity is related to increasing volatility levels in

the electricity spot market. In a similar vein, Corbet et al. (2021) find a positive relationship

between Bitcoin prices and the volatility of returns of certain electricity and utility compa-

nies. Closely related to our paper, Akyildirim et al. (2021) investigate coal mining disasters

in China. While they do not find substantial effects of mining accidents on a selection of

global coal-related financial products, such disasters appear to increase the dynamic correla-

tions with Bitcoin. Since we compare Bitcoin and its energy-intensive consensus mechanism

to a more energy-efficient alternative during a shock to the electricity market, our study also

relates to this stream within the literature.

The remainder of the paper is structured as follows: Section 2 introduces the event

and develops our hypotheses while Section 3 explains the empirical methodology. Section 4

discusses the results for blockchain and trading activity before Section 5 concludes.

2. Background and Hypotheses

2.1. Bitcoin Mining and the Blackout

Cryptocurrency miners tend to be secretive regarding their operations, including their

precise geographic location. However, because electricity constitutes the main input factor for

miners of PoW currencies, they gravitate towards countries with cheap energy, in particular

China (Delgado-Mohatar et al., 2019). While in the wet season from May to October,

many miners are located near hydroelectric plants in the provinces of Sichuan and Yunnan,

operations migrate to other areas in the dry season, in particular Xinjiang with its cheap coal

energy. According to the Cambridge Centre for Alternative Finance (2021), China accounts

for about 65% of all Bitcoin mining during our sample. Moreover, Xinjiang alone accounts

for about 36% of worldwide activity.
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On April 10, 2021, a coal mine flooded in Hutubi County in northern Xinjiang, trapping

21 people. As a consequence, the local government announced extensive safety inspections

on April 15, which led to the temporary shutdown of several power plants in the region

and resulted in a local electricity shortage (Altxw.com, 2021). Various news articles then

document a sharp decrease in the Bitcoin hashrate, i.e., the total computing power of the

network, starting April 16 as cryptocurrency mining operations lost electricity (e.g. For-

tune.com, 2021; Digiconomist.net, 2021). Power only gradually resumed after about one

week, leading to a gradual increase of the hashrate back to its previous level (Theblock-

crypto.com, 2021). We hence consider the window from April 16 to April 22 as the blackout

period. While we can reasonably precisely timestamp the beginning of the blackout, there

is some uncertainty regarding when exactly power was restored. We address this issue in

two ways: First, we estimate the implied hashrate and test not only if there is a significant

drop during this period, but also if the computing power is restored back to its previous

level afterwards. Second, we repeat our regression analysis using different window lengths

and find that our results are robust to different specifications.

The blackout provides a unique opportunity to analyze risks associated with the geo-

graphical concentration of Bitcoin mining. Firstly, the blackout can be relatively accurately

timestamped and immediately affected miners in that region. This is not necessarily the case

for other types of events. For example, while government restrictions on cryptocurrencies

and mining in particular are highly relevant signals regarding the prospects of cryptocur-

rencies, they are unlikely to immediately and effectively shut down all local mining opera-

tions, making a clear identification difficult (see e.g. Chen and Liu, 2021). Furthermore, the

vulnerability of cryptocurrency mining to government restrictions is a consequence of geo-

graphical concentration stemming from the PoW consensus mechanism’s energy dependence.

Investigating the effects of the blackout is thus a more direct test of geographical mining

concentration.2 Secondly, the considered blackout constitutes an exogenous shock to mining,

2In July and September 2021, China again banned mining activity and cryptocurrency transactions. While
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which might not hold for other events. For instance, the electricity consumption of Bitcoin

mining and the resulting stress to the power grid has been blamed for power outages in other

regions like Iran (CNBC, 2021). While somewhat unlikely, the causality might be reversed

when using those blackouts as shocks to mining. Finally, many alternative shocks only in-

directly affect mining, for example through cryptocurrency price changes. In contrast, our

event directly impacts not just the profitability, but the possibility of mining in the affected

region, which is a direct consequence of the geographical centralization of mining.

2.2. Hypothesis Development

If mining operations are interrupted by the blackout, we expect the total computing

power of the network to decrease. We hence first confirm that the hashrate of the Bitcoin

network is indeed significantly lower during the blackout.

Hypothesis 1: The hashrate of the Bitcoin network is lower during the blackout.

Keeping the difficulty of mining a block constant, a reduction in the hashrate leads to an

increase in the average time between blocks and fewer mined blocks overall. The capacity

on the blockchain thus becomes more binding. Consequently, impatient traders compete for

the scarce resource of blockchain capacity by bidding up fees, akin to a congestion of the

blockchain as in Kim (2020). This reasoning also aligns with Easley et al. (2019). In their

model, fees reflect the queuing problem faced by Bitcoin users. As waiting times increase,

some users choose to increase their fees. However, others exit and do not submit transactions

as the benefit of having the transaction recorded does not outweigh the cost associated with

fees and waiting times.

Hypothesis 2: Fees paid to miners increase during the blackout.

many miners subsequently left Xinjiang and the rest of China, mining activity mostly migrated to Kazakhstan
and the United States, in particular Texas. Both countries now collectively represent more than 50% of
worldwide mining capacity (CNBC, 2021). Geographical centralization of mining is hence still a potential
problem for the whole network, even though miners may no longer specifically depend on cheap coal energy
from Xinjiang.
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Reacting to the higher level of fees and the lower overall capacity of the blockchain,

patient traders or those with only marginal utility gains from trade omit or postpone their

trading, leading to fewer transactions recorded on the blockchain.

Hypothesis 3: The number and value of transactions recorded on the Bitcoin blockchain

decreases during the blackout.

So far, we have only considered on-blockchain trading activity. However, we also expect

the blackout to impact exchange trading activity. In the model of Zimmerman (2020),

limited settlement space and the associated competition between cryptocurrency users and

speculators leads to a crowding-out of those who want to use the currency for payments.

This in turn decreases the value of the currency as a means of payment while increasing its

riskiness in the form of price volatility. Furthermore, Bhambhwani et al. (2019) empirically

show that there is a positive relationship between cryptocurrency prices and computing

power. They conjecture that computing power is a fundamental pricing factor that proxies

for systemic risk.

Hypothesis 4: Bitcoin depreciates during the blackout.

Hypothesis 5: Bitcoin returns become more volatile during the blackout.

The increase in risk and the general uncertainty surrounding the blackout likely leads to

a reduction in liquidity as market makers reduce their exposure. Furthermore, increases in

settlement times may make it more difficult for market makers to manage their inventories.

Hypothesis 6: Exchange liquidity deteriorates during the blackout.

Finally, higher volatility and lower liquidity make it more difficult for arbitrageurs to

exploit arbitrage opportunities across different trading venues. Furthermore, according to

the model of Hautsch et al. (2021), settlement latency reduces cross-market trading and

makes exploiting potential arbitrage opportunities riskier. This is because arbitrageurs on
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centralized exchanges face the dilemma of either trusting the exchanges by keeping funds in

their accounts or potentially missing out on trading opportunities due to high blockchain

latency which reduces the speed of moving funds into and out of exchange accounts used

for trading. Since centralized cryptocurrency exchanges have a long history of misplacing

customer funds by being hacked or by embezzlement, trust in many exchanges is generally

relatively low. Hence, most traders prefer not to keep large amounts of funds with an

exchange for longer periods of time. This leads to larger and more volatile cross-venue price

differences when settlement latency is high.

Hypothesis 7: Market integration decreases as cross-venue price differences increase.

3. Empirical Approach

3.1. Sample Selection and Data

The sample period includes the blackout period and one week before, though we addi-

tionally obtain data for the surrounding weeks to analyze any trends. During this time, we

compare Bitcoin to Ada, the internal cryptocurrency of the Cardano platform. Cardano

was launched in 2017 and consists of two layers, where the first layer is the settlement layer

tracking Ada ownership, similar to the Bitcoin network. The second layer facilitates smart

contracts akin to the Ethereum network. Importantly, Cardano uses the PoS consensus

mechanism, making Ada the largest PoS and non-PoW cryptocurrency by far, representing

more than half of the market capitalization of all PoS currencies (Irresberger et al., 2020).

Overall, it is the fifth largest cryptocurrency as of May 2021.

Our data comes from two types of sources: First, we collect hourly data from the cur-

rencies’ blockchains: the number of new blocks, the average time between two blocks, and

the number of transactions contained in all blocks. Furthermore, we compute the value sent

within all transactions, the average size of a transaction, and the total fees paid to miners

using market prices. Second, we download minutely exchange rate data from Kraken, which
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is generally considered trustworthy and one of the most liquid exchanges for trading Bitcoin

and Ada. We focus on trading cryptocurrencies against the US dollar. For robustness and to

study cross-venue market integration, we also consider Binance, where Bitcoin and Ada are

traded against the stablecoin Tether, and Bittrex, which is a substantially smaller exchange

than either Kraken or Binance.3

We aggregate the exchange data to an hourly frequency by calculating logarithmic returns

based on hourly closing prices, the standard deviation of minutely logarithmic returns, and

the trading volume in USD. Because Scharnowski (2021) indicates that Bitcoin liquidity is

related to the hashrate, we follow Brauneis et al. (2021) and consider different measures of

liquidity. Firstly, we use the Corwin and Schultz (2012) high-low spread estimator, which

according to Brauneis et al. (2021) performs well in capturing the time-series variation of

liquidity.

Spreadt =
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As commonly done, we set negative spread estimates to zero. Secondly, we compute the Kyle

and Obizhaeva (2016) illiquidity index, which performs well in capturing the cross-sectional

variation of liquidity. Intuitively, the measure expresses how volatile returns react to a given

trading volume. Formally, we use the following specification

Illiquidityt =

[
σ2
t

Volumet

] 1
3

3While there is a debate on the stability of stablecoins (Hoang and Baur, 2021), differences between USD
and Tether are small during our sample period. The maximum and minimum USDT/USD exchange rate at
Kraken are 1.0061 and 0.9990, respectively. The choice of quote currency is thus unlikely to meaningfully
impact our results. Still, in most analyses we only compare different base currencies while keeping the quote
currency fixed.

9



Finally, the study any changes in market integration, we compute price differences be-

tween the trading venues Kraken and Binance based on minutely closing prices.

Price Difft =

∣∣∣∣ln( CloseKraken,t

CloseBinance,t

)∣∣∣∣
We consider the average, the standard deviation, the 90th percentile, and the maximum

absolute price difference during each hourly interval to capture different dimensions of the

distribution of cross-venue price differences.

Table 1 provides summary statistics based on two weeks before the blackout. While

both currencies are the largest by market capitalization using their respective consensus

mechanism, Bitcoin’s transaction activity is still much higher. To reduce noise, we hence use

data from that week to standardize the variables. In particular, for each currency and for

all variables except returns, we subtract this time-series mean and divide by the standard

deviation. However, we obtain qualitatively similar results when instead transforming the

variables by taking their natural logarithm or not standardizing at all.

3.2. Estimating the Network Hashrate

We first document the extent to which Bitcoin miners were affected by the blackout.

While not directly observable, their aggregate computing power can be estimated by the

implied hashrate. The hashrate is related to the ratio of the current difficulty within the

network and the time between two blocks. The former describes how computationally de-

manding it is to solve the mathematical puzzle by finding a hash below a certain threshold

which would lead to the successful mining of a block. Importantly, while time between blocks

is stochastic, the difficulty is adjusted roughly every two weeks to keep the expected time

between blocks at ten minutes.4 It follows that miners’ investments change their hashrate,

their relative market power, and the total electricity cost of the network due to mining, but

4The difficulty stayed constant during the blackout. Several days later there was a sharp drop in difficulty,
reflecting the lower average hashrate during the blackout.
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Table 1: Descriptive Statistics

Mean SD P5 P50 P95 Skew. Kurt.

Panel A: Bitcoin

TransactionsN 12.24 4.84 5.23 12.00 20.75 0.4 2.8
TransactionsTotal Value 3.83 1.99 1.13 3.43 7.66 1.0 4.2
TransactionsSize 0.33 0.17 0.12 0.30 0.61 1.9 11.3
TransactionsBlock 2063.74 426.11 1242.33 2083.15 2684.20 −0.3 2.8
Blocktime 11.69 6.39 5.61 10.01 22.12 2.2 9.8
FeesTotal 221.84 85.53 109.27 205.02 380.06 0.6 3.1
FeesRelative 0.69 0.32 0.34 0.63 1.26 1.4 5.6
Return −0.71 45.04 −87.36 −3.00 68.89 0.5 4.9
Volatility 6.29 2.67 3.36 5.68 11.52 1.5 5.7
Volume 8.15 6.69 2.07 6.52 20.11 3.0 17.9
Spread 0.50 0.42 0.08 0.36 1.35 1.8 6.7
Illiquidity 1.37 0.32 0.91 1.37 1.94 0.2 2.4

Panel B: Ada

TransactionsN 1.52 1.07 0.94 1.41 2.16 10.5 126.8
TransactionsTotal Value 0.20 0.18 0.08 0.16 0.40 5.0 35.4
TransactionsSize 0.14 0.11 0.06 0.11 0.28 4.2 25.6
TransactionsBlock 8.86 6.77 5.27 8.11 12.81 10.7 129.2
Blocktime 0.35 0.03 0.31 0.35 0.40 0.5 3.5
FeesTotal 0.40 0.23 0.24 0.37 0.60 8.8 98.9
FeesRelative 0.03 0.01 0.01 0.02 0.04 2.3 15.6
Return 1.73 92.54 −137.86 4.72 139.98 2.5 22.3
Volatility 11.46 8.04 4.33 9.43 23.87 3.4 20.0
Volume 1.16 1.45 0.29 0.82 2.67 6.2 52.9
Spread 0.78 1.08 0.09 0.53 2.21 6.8 64.3
Illiquidity 6.47 20.06 2.88 4.84 7.52 12.8 164.4

This table shows summary statistics based on hourly data from the week of April 2. TransactionsN is the
number of transactions recorded on the blockchain in 1k, TransactionsValue their value in USD 1bn, and
TransactionsSize their average size in USD 1mn. TransactionsBlock gives the average number of transactions
per block and Blocktime the average time between two blocks in minutes. FeesTotal is the sum of all fees
paid by users in USD 1k and FeesRelative the same relative to the value of the transactions in basis points.
The remaining variables are based on trading data from Kraken: Return is the logarithmic return of hourly
closing prices in basis points, Volatility the standard deviation of minutely log returns in basis points, Volume
is the trading volume in USD 1mn, Spread is the high-low spread estimate in basis points, and Illiquidity is
the illiquidity index by Kyle and Obizhaeva (2016) in basis points.

over a longer horizon this arms race does not further impact the Bitcoin network as it simply

leads to an increase in difficulty. In particular, the total rewards in the form of newly mined

bitcoins stays the same (Alsabah and Capponi, 2020).

Using the observed average time between two blocks during some interval then gives an

estimate of the implied network hashrate. Regarding the choice of time interval, there is a

trade-off between the stability of the estimate and the frequency with which we can observe
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the computational power of the network. We use an interval length of three hours, but our

results are generally robust to using longer and shorter intervals.

̂Hashratet = 232 × Difficultyt

TimeBetweenBlockst

3.3. Regression Analysis

We analyze the impact of the blackout in a difference-in-difference framework by com-

paring Bitcoin to a non-PoW cryptocurrency that, by design, only trivially depends on

electricity and was thus not directly affected by the blackout. Using this approach, we

control for unobservable confounding factors that affect both cryptocurrencies, for example

through economy-wide or (crypto)market-wide changes, while isolating the effect on Bitcoin

with its PoW consensus mechanism.5

Specifically, for the period including the blackout and the one week before, we estimate

Yit = α + β1Bitcoini + β2Blackoutt + β3Bitcoini × Blackoutt + εt

where Yit is a standardized measure of blockchain or trading activity and Bitcoin and Black-

out are binary indicator variables. The constant shows the value of Ada before the blackout,

normalized using data from two weeks before. The coefficient for Bitcoin gives the normalized

difference between the two currencies before the blackout. The blackout coefficient shows

the normalized difference during the blackout, while the interaction term gives its additional

effect on Bitcoin.

A concern might be that there are spillover effects from Bitcoin as the leading cryptocur-

rency to the rest of the market, which then would indirectly affect the control currency.

5While in this study we do not consider other PoW currencies, it is ultimately an empirical question
whether miners of other PoW cryptocurrencies were located in the same region affected by the blackout.
However, using data from etherscan.io, we find that the estimated Ethereum network hashrate was not
impacted by the blackout, increasing by about 0.22% during the blackout period compared to the week
before.
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Figure 1: Computational Power of Bitcoin Network
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This graph shows the estimated implied hashrate of the Bitcoin network in exahash per second. Each
estimate is based on the current difficulty of the network and the average time between blocks mined within
a three hour window. The vertical dashed lines indicate the beginning and end of the blackout and the three
surrounding weeks. The horizontal bars show the average hashrate during the respective windows.

However, assuming such spillovers impact the control currency in the same direction, they

would actually lead to an underestimation of the additional effect the blackout has on Bitcoin

and would instead be captured by the coefficient for the blackout.6

4. Results

4.1. Drop in Hashrate

Figure 1 shows the development of the implied hashrate of the Bitcoin network. While

volatile, its average during the two weeks before the blackout is virtually identical at about

170 EH/s. During the blackout, the hashrate drops to 130 EH/s, or by about 24%, suggesting

that about one quarter of Bitcoin mining operations were affected by the blackout. The drop

is highly statistically significant: t-tests for differences between the blackout period and the

week before or afterwards give absolute test statistics of 5.19 and 3.37, respectively. Using

median instead of average time between two blocks to estimate the hashrate gives similar

results, though at an overall higher level. The difference between the implied hashrate during

the week before to the week after the blackout is statistically insignificant, supporting the

choice of the length of the blackout window.

6This underestimation becomes apparent later when we consider abnormal returns to calculate volatility.
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The sudden drop in hashrate confirms our first hypothesis and indicates that during the

sample period covering the end of the dry season in Southwest China, a significant fraction

of global Bitcoin mining was concentrated in a relatively small geographic area in northern

Xinjiang and powered mostly by coal. Though Bitcoin is decentralized by design, the power

outage shows limits to decentralization of PoW currencies, since miners crucially depend on

low electricity prices.

4.2. Blockchain Activity and Transaction Fees

We continue by analyzing the activity on the currencies’ blockchains in Table 2. The

first two columns indicate that during the blackout, Ada experienced an increase in the

number and value of the transactions recorded on its blockchain. The increases of 0.19 and

0.44 of a standard deviation relative to before the blackout are statistically significant, but

substantially smaller than the corresponding decrease for Bitcoin. Compared to before the

blackout, Bitcoin’s transaction activity even decreases by 0.50 and 0.05 standard deviations

for the number and value of transactions, respectively, confirming hypothesis 3. The average

transaction size and the number of transactions included in each block increase during the

blackout, but not especially so for Bitcoin. Reflecting the results for the hashrate, the

time between two blocks significantly increases for Bitcoin by 0.675 standard deviations,

which translates to roughly four minutes. Given the rule of thumb of waiting for six blocks

to consider a transaction confirmed, Bitcoin traders have to wait for about 26 minutes

additionally – or 37% longer than usual – to be sure that their transactions are irreversibly

recorded on the blockchain. Contrarily, Ada with its PoS consensus mechanism remains

unaffected.

The last two columns show how the fees paid for faster settlement increase during the

blackout, lending support to hypothesis 2. The descriptive statistics have shown historically

high fees in the weeks before the blackout; still, the sum of all fees increases for both cur-

rencies, though the effect is much stronger for Bitcoin. Since total fees incorporate both the

effects of the average fees and the amount transacted, we additionally consider relative fees.
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Table 2: Blockchain Activity

TXN TXValue TXSize TXBlock Blocktime FeesTotal FeesRelative

Constant 0.057∗ 0.173∗ 0.115 0.047 −0.023 0.264∗∗∗ −0.011
(1.90) (1.69) (0.91) (1.58) (−0.27) (5.54) (−0.18)

Bitcoin 0.056 0.063 0.146 0.041 0.053 0.376∗∗∗ 0.076
(0.63) (0.51) (0.93) (0.51) (0.41) (2.92) (0.75)

Blackout 0.193∗∗∗ 0.441∗∗∗ 0.308∗ 0.155∗∗∗ −0.158 0.163∗∗∗ −0.237∗∗

(4.92) (2.96) (1.80) (4.02) (−1.43) (2.67) (−2.33)

Bitcoin×Blackout −0.692∗∗∗ −0.494∗∗∗ −0.023 0.055 0.833∗∗∗ 3.106∗∗∗ 2.966∗∗∗

(−5.83) (−2.63) (−0.11) (0.50) (4.09) (11.21) (11.69)

Observations 667

This table shows difference-in-difference regression results for blockchain activity using hourly data.
TransactionsN is the total number of transactions recorded on the respective blockchain and TransactionsValue

the USD value contained in these transactions. Blocktime is the average time between two blocks in minutes.
FeesTotal is total amount of fees paid for the transactions in USD. FeesRelative is the ratio of total fees to total
transaction value in basis points. The variables have been standardized for each currency by subtracting
their average value and dividing by their standard deviations during the week before the sample period.
The treatment period of the blackout from April 16 to April 22, 2021 is compared to the 7 days before the
blackout. Robust standard errors are reported in parentheses. ***, **, * denotes significance at the 1%, 5%,
10%–level, respectively.

We find that relative fees even decrease somewhat for Ada, but soar for Bitcoin by almost

three standard deviations. This translates to an economically meaningful increase in relative

fees by 0.94 basis points. While still low compared to other financial assets, this constitutes

an increase of about 135% relative to before the sample period.

Figure 2 shows the development of transaction value and relative fees, confirming the

regression results and illustrating the parallel trends before the event. In the weeks prior

to the blackout, both currencies closely co-move. Starting with the blackout, the currencies

diverge as Bitcoin’s transaction value decreases and relative fees increase substantially. Fees

gradually decrease back to previous levels after about ten days. While the reversion is faster

for the transaction value, it appears as though for Bitcoin the value actually increases for

some time once fees have reverted back to normal levels. This is consistent with the notion

that some traders merely postpone their trading.

The results suggest that during the blackout, capacity restrictions on the Bitcoin blockchain

became significantly more binding, inducing impatient traders to bid up fees. Our analy-

sis thus also confirms the predictions of Easley et al. (2019), where fees reflect the traders’
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Figure 2: Transacted Value and Fees

-0.5

0.0

0.5

1.0

1.5

TX
 V

al
ue

April 2, 2021 April 9, 2021 April 16, 2021 April 23, 2021 April 30, 2021April 30, 2021

-0.0

2.0

4.0

R
el

at
iv

e 
Fe

es

April 2, 2021 April 9, 2021 April 16, 2021 April 23, 2021 April 30, 2021April 30, 2021

Bitcoin Ada

The top graph shows the total transaction value on the blockchains. The bottom graph shows the fees
relative to the value of the transactions. Both variables have been standardized by subtracting the mean
and dividing by the standard deviation during the week from April 2 to April 8. The graphs show daily
averages of the respective hourly variables.

queuing problem. As waiting times increase, some users choose to increase their fees while

others exit. Our findings of an exogenous increase in waiting times due to the blackout and

a subsequent increase in fees and a reduction in the number of transactions is thus consistent

with their predictions.

4.3. Returns and Liquidity

Finally, we turn to the effect the blackout and resulting shock to mining activity has on

cryptocurrency prices and exchange trading activity. The results can be found in Table 3.

Prices do not significantly change for either currency as seen in the first column. While several

news outlets associated a concurrent decline in prices with the blackout, the observed lower

returns during the blackout are well within the usual volatility of the cryptocurrencies and

thus insignificant. Conversely, price volatility is generally much higher during the blackout,

and especially so for Bitcoin, confirming hypothesis 5. Compared to before the blackout, the

volatility of Ada increases by 0.71 while Bitcoin’s volatility increases by an additional 1.08

standard deviations, which in both cases is highly statistically and economically significant.
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Table 3: Prices and Exchange Trading Activity

Return Volatility ReturnMM Volatility Volume Spread Illiquidity

Constant 11.516 0.461∗∗∗ 1.480 0.553∗∗∗ 0.544∗∗∗ 0.412∗∗∗ −0.066∗∗∗

(1.21) (4.83) (0.17) (5.69) (5.29) (4.75) (−12.84)

Bitcoin −6.403 −0.283∗∗ 3.633 −0.376∗∗∗ −0.109 −0.300∗∗ −0.070
(−0.61) (−2.18) (0.38) (−2.86) (−0.71) (−2.43) (−0.83)

Blackout −26.926 0.711∗∗∗ −11.356 0.399∗∗∗ 0.191 0.370∗ 0.055∗∗∗

(−1.61) (4.74) (−0.96) (2.63) (1.22) (1.94) (6.65)

Bitcoin×Blackout 9.634 1.081∗∗∗ −5.936 1.394∗∗∗ 0.700∗∗∗ 1.633∗∗∗ 0.775∗∗∗

(0.51) (4.16) (−0.40) (5.34) (2.61) (4.11) (6.63)

Observations 674

This table shows difference-in-difference regression results for trading activity on Kraken using hourly data.
Return is the logarithmic return of hourly closing prices in basis points. Volatility is the standard deviation
of minutely log returns. For ReturnMM and VolatilityMM, the returns of Ada are the residuals of regressing
Ada returns on Bitcoin returns. Volume is the total trading volume in USD. Illiquidity is the illiquidity index
by Kyle and Obizhaeva (2016). The variables except returns have been standardized for each currency by
subtracting their average value and dividing by their standard deviations during the week before the sample
period. The treatment period of the blackout from April 16 to April 22, 2021 is compared to the 7 days
before the blackout. Robust standard errors are reported in parentheses. ***, **, * denotes significance at
the 1%, 5%, 10%–level, respectively.

Since many cryptocurrencies closely co-move with Bitcoin prices, in the third and fourth

column we first calculate abnormal returns for Ada by using Bitcoin returns as a single

market factor. This way, we control for any expected price changes due to Bitcoin returns.

Nevertheless, our findings regarding prices do not change. However, the effect of the blackout

on Ada return volatility decreases in magnitude while the effect on Bitcoin increases when

using abnormal returns.

Trading volume at Kraken is higher during the blackout, especially and significantly so

for Bitcoin. Consistent with the observed increase in volatility, the additional uncertainty

surrounding the shock to mining and the drop in hashrate might induce traders to adjust

their portfolios. Additionally and according to hypothesis 6, we find that liquidity deterio-

rates during the blackout as bid-ask spreads widen substantially and the Kyle and Obizhaeva

(2016) illiquidity index indicates that trading volume has a larger price impact. Noteworthily,

liquidity decreases even though trading volume increases. The reduction in liquidity is po-

tentially due to the increase in volatility and general uncertainty as market makers demand

compensation for the additional risk or withdraw due to difficulties in inventory management.
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Figure 3: Volatility, Volume, and Spreads
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The graphs show the abnormal return volatility, trading volume, and high-low spread estimates. All variables
have been standardized by subtracting the mean and dividing by the standard deviation during the week
from April 2 to April 8. The graphs show daily averages of the respective hourly variables.

The graphs in Figure 3 show that volatility, volume, and estimated spreads exhibit very

similar patterns. Before the blackout, both currencies again closely co-move. Compared to

the changes in blockchain activity, the reaction of exchange trading activity occurs with a

slightly greater delay of about one day. All measures stay at elevated levels until after about

ten days, coinciding with the higher blockchain trading fees.

Our findings regarding exchange trading activity, especially with respect to return volatil-

ity and market liquidity, indicate that there are substantial spillover effects from mining to

exchange trading activity. Operational risks faced by mining operations, like those arising

from geographical mining concentration, thus have potentially severe effects on all market

participants.
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Table 4: Market Integration

∆PKraken–Binance
Mean ∆PKraken–Bittrex

Mean ∆PBinance–Bittrex
Mean ∆PKraken–Binance

P90 ∆PKraken–Binance
Std.Dev.

Constant 0.834∗∗∗ 1.189∗∗∗ 1.347∗∗∗ 0.758∗∗∗ 0.626∗∗∗

(7.02) (4.41) (6.31) (7.04) (6.06)

Bitcoin 0.656∗∗∗ 1.067 0.934∗∗ 0.356∗∗ 0.009
(3.27) (1.60) (2.44) (2.03) (0.06)

Blackout 4.840∗∗∗ 0.725∗ 2.277∗∗∗ 4.330∗∗∗ 3.048∗∗∗

(6.14) (1.71) (4.65) (6.18) (5.41)

Bitcoin×Blackout 0.028 −0.809 1.824∗∗ −0.806 −1.370
(0.03) (−1.00) (2.45) (−0.89) (−1.50)

Observations 670

This table shows regression results for market integration. The first four columns show difference-in-difference
results for relative absolute price differences between Kraken and Binance. The measures are based on
minutely closing prices and aggregated to an hourly frequency by computing the average, standard deviation,
90th percentile, and maximum of differences. The variables have been standardized by subtracting their
average value and dividing by their standard deviations during the week before the sample period. The last
column shows regression results for the correlation of minutely returns between Bitcoin and Ada during each
hourly window. The treatment period of the blackout from April 16 to April 22, 2021 is compared to the 7
days before the blackout. Robust standard errors are reported in parentheses. ***, **, * denotes significance
at the 1%, 5%, 10%–level, respectively.

4.4. Market Integration

Finally, we study market integration by analyzing cross-venue price differences. The

results in Table 4 and Figure 4 indicate that generally, price differences increase substantially.

For example, price differences between Kraken and Binance increase by almost five standard

deviations relative to before for both currencies, though there is no additional effect for

Bitcoin. The same holds for more extreme price differences as given by their 90th percentile

and for the volatility of price differences. Regarding differences between Kraken and Bittrex,

we find an only marginally significant increase for Ada, while Bitcoin does not appear to be

impacted at all.

Taken together, these results indicate that exploiting arbitrage opportunities during the

blackout period with its higher volatility and lower liquidity becomes more difficult, agreeing

with hypothesis 7. This result is mainly driven by price differences to the weakly-regulated

exchange Binance where Bitcoin and Cardano trade against Tether. Hence, our findings may

also indicate that exploiting arbitrage opportunities between USD- and Tether-denominated

exchange rates becomes more difficult. Our results are also in line with Hautsch et al. (2021)
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Figure 4: Cross-venue Price Difference
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The graph shows the relative price difference between Kraken and Binance. The variable has been standard-
ized by subtracting the mean and dividing by the standard deviation during the week from April 2 to April
8. The graph shows daily averages of the respective hourly variable.

and thus empirically confirm their findings regarding the negative effect of settlement latency

on market integration using the exogenous shock of the blackout.

4.5. Robustness

We perform a number of robustness tests. To address concerns regarding our choice

of trading venue, we repeat the analysis using data from Binance, where Bitcoin and Ada

are quoted against the stablecoin Tether. The results can be seen in Panel A of Table 5.

Overall, we obtain very similar results, suggesting that the results are not exchange-specific.

The major difference to Kraken is that there is a stronger increase of volatility and trading

volume for Bitcoin during the Blackout but an overall weaker reduction in liquidity.

While Ada is the largest non-PoW cryptocurrency and thus an intuitive control group,

we additionally verify that our results are not driven by this choice, either. Panels B and C

of Table 5 show the same analyses as before, but while using a portfolio of non-PoW cryp-

tocurrencies as the control currency. The equally weighted portfolio additionally contains

Waves, Tronix (of the TRON network), and Atom (of the Cosmos network). Reassuringly,

our results do not materially change when using the alternative control group. The only

meaningful difference is that the relative drop in transaction value of Bitcoin during the

blackout is not statistically significant. Overall, this yields further support to the notion

that there is a decreases in market quality for Bitcoin during the blackout and that the re-

sults are not driven by idiosyncrasies of the control currency. In fact, we obtain very similar
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Table 5: Robustness Tests

Panel A: Prices and Exchange Trading Activity using Binance Data

Return Volatility ReturnMM Volatility Volume Spread Illiquidity

Constant 11.463 0.474∗∗∗ 1.572 0.614∗∗∗ 0.477∗∗∗ 0.551∗∗∗ 0.175∗∗∗

(1.17) (4.89) (0.18) (6.26) (5.35) (4.84) (3.28)

Bitcoin −6.470 −0.340∗∗∗ 3.421 −0.480∗∗∗ 0.023 −0.509∗∗∗ −0.410∗∗∗

(−0.60) (−2.62) (0.35) (−3.67) (0.16) (−3.69) (−4.79)

Blackout −26.899 0.705∗∗∗ −11.791 0.219 −0.058 1.179∗∗∗ 1.071∗∗∗

(−1.57) (4.66) (−0.97) (1.55) (−0.55) (7.21) (11.92)

Bitcoin×Blackout 9.712 1.107∗∗∗ −5.396 1.594∗∗∗ 0.867∗∗∗ 0.193 0.441∗∗∗

(0.50) (3.77) (−0.36) (5.53) (4.23) (0.78) (2.72)

Panel B: Blockchain Activity using a non-PoW Portfolio

TXN TXValue TXSize TXBlock Blocktime FeesTotal FeesRelative

Constant 0.049 0.055 0.054 0.003 −0.251∗∗∗ 0.508∗∗∗ −0.024
(1.07) (0.88) (0.91) (0.07) (−6.23) (8.77) (−0.70)

Bitcoin 0.064 0.181∗ 0.207∗ 0.084 0.281∗∗∗ 0.133 0.089
(0.66) (1.92) (1.87) (0.96) (2.65) (1.00) (1.00)

Blackout 0.295∗∗∗ 0.161 0.078 0.279∗∗∗ 0.038 −0.074 −0.044
(4.65) (1.55) (0.78) (4.40) (0.73) (−0.98) (−0.90)

Bitcoin×Blackout −0.794∗∗∗ −0.215 0.206 −0.069 0.637∗∗∗ 3.342∗∗∗ 2.773∗∗∗

(−6.17) (−1.39) (1.26) (−0.58) (3.56) (11.92) (11.67)

Panel C: Prices and Exchange Trading Activity using a non-PoW Portfolio

Return Volatility ReturnMM Volatility Volume Spread Illiquidity

Constant 13.932∗ −0.050 6.478 −0.018 0.689∗∗∗ 0.013 −0.378∗∗∗

(1.78) (−1.02) (0.94) (−0.38) (6.65) (0.33) (−15.16)

Bitcoin −8.819 0.227∗∗ −1.364 0.195∗ −0.254∗ 0.100 0.242∗∗∗

(−0.98) (2.24) (−0.17) (1.94) (−1.65) (1.04) (2.77)

Blackout −32.994∗ 0.640∗∗∗ −19.034 0.499∗∗∗ −0.008 0.241∗∗ 0.333∗∗∗

(−1.90) (6.38) (−1.52) (5.23) (−0.05) (1.97) (7.28)

Bitcoin×Blackout 15.702 1.152∗∗∗ 1.742 1.293∗∗∗ 0.898∗∗∗ 1.763∗∗∗ 0.496∗∗∗

(0.80) (4.91) (0.11) (5.56) (3.39) (4.77) (3.97)

This table shows robustness tests similar to Table 2 and Table 3. In Panel A, exchange data from Binance
is used, where Bitcoin and Ada are traded against US Tether. In Panels B and C, an equally weighted
portfolio of cryptocurrencies (Ada, Tronix, Atom, and Waves) using consensus protocols other than PoW is
used while the exchange data comes from Kraken. Robust standard errors are reported in parentheses. ***,
**, * denotes significance at the 1%, 5%, 10%–level, respectively.

results when using each of the control currencies in the portfolio individually.

Our results are also robust to the exact specification of the event window. While we can

relatively precisely timestamp the beginning of the blackout, timestamping the end proves

more difficult. Though our estimate of the implied hashrate is consistent with a blackout

duration of about one week, some of our investigated measures – like fees or volatility –

stay at elevated levels longer than one week. While this does not necessarily imply a longer

blackout duration, in untabulated results we empirically confirm that changing the window
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length by moving the end date of the blackout period by several days in either direction does

not meaningfully impact our conclusions.

5. Conclusion

Many cryptocurrencies are decentralized by design, though market forces may drive them

towards lower degrees of decentralization. While the previous literature has focused on

centralization in mining hardware or the effect of centralized mining pools, our results provide

evidence that points to another risk associated with mining concentration: When miners

crucially depend on low electricity prices and hence accumulate in the same area, local

geopolitical and operational risks can adversely affect the whole network. Since we also

document strong spillover effects to exchange trading activity, these risks potentially affect

a wide range of market participants. Traders and regulator should be aware of these risks

associated with proof-of-work cryptocurrencies.

The power outage in one relatively small geographical region thus shows limits to decen-

tralization of PoW currencies. The results also indicate that the Bitcoin network currently

not only consumes vast amounts of energy, but also heavily relies on fossil fuels. Currencies

based on alternative consensus mechanisms such as proof-of-stake do not necessarily share

these same shortcomings stemming from the inherent dependence on electricity as the main

input factor.

A noteworthy point about our analysis is that the shock to the network is only temporary.

While in our case this is a result of the limited duration of the blackout, the temporary

nature of shocks to mining activity is also an inherent feature of the PoW mechanism. The

automatic adjustment of mining difficulty ensures that such shocks only temporarily affect

the speed of settlement, attenuating the geopolitical and operational risks of centralization

in the long term. However, in the short term, mining centralization still potentially leads

to higher and more volatile fees and opportunity costs due to slower settlement and missed

gains from trade. Future research investigating the welfare implications of centralization
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within cryptocurrencies and the relative merits of different consensus mechanisms should

thus not only consider the costs and environmental externalities associated with mining, but

also these indirect costs imposed on users.
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